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Abstiact

There arc three issues to consider when building
an embedded training system for a task domain
involving the operation of complex equipment:
(1) how skill is acquired in the task domain; (2)
how the training systcm should be dcsigtwd to
assist in the acquisition of the skill, and more
specifically, how an intelligent tutor could aid
in lcarnin~ and (3) whether it is feasible to in-
corporate the result ing training system into the
opcrationa] environment. This paper describes
how these issues have been addressed in a pro-
totype training system that was developed for
operations, in NASA’s Deep Space Network
(lXN).  The first two issues were addreswd by
building an cxccutablc  cognitive model of prob-
lem solving and skill acquisition of the task
domain and then using the model to design an
intelligent tutor. ~’hc cognitive model was de-
veloped in Soar for the DSN’S Link Monitor and
Control (LMC) system; it led to several insights
about learning in the task domain that were
used to design an intelligent tutor called IWACT
that implements a method called “inq>assc-
drivcn tutoring.” K~AC]’ k 01M2 COIl)pOIWt  O f
the LMC training system, which also includes a
communications link simulator and a graphical
user interface. A pilot study of the LMC train-
ing system indicates that REACT shows promise
as an effective way for helping Operators to
quickly acquire expert skills. This prototype is
being used to address the feasibility of en~bcd-
ding the training system in the DSN environ-
ment  .

I n t r o d u c t i o n

The Deep Space Network (DSN) is a world-
wide system for navigating, tracking, and com-
municating with NASA’s unmanned interplane-
tary spacecraft. The success of the DSN in ac-
complishing its mission is largely a result of the
constant scientific and engineering in~prove-
mcnts that have been made to the conmmnica-
tions devices and the systems that monitor and
control them; but this succcss is also due to the
ability of the Operators to execute complex pro-
cedures on the communications equipment in a
timcl y and error-free manner. Operations n~is-
takcs can bc costly, both in terms of lost mission
data and damage to equipment. For this reason,
it is essential that the Operators bc well
trained and possess the skills that are required
for performing tasks in a highly interactive en-
vironment. This paper addresses the issue of
how to build an embedded training system that
can assist Operators in rapidly acquiring the
expert level of skill needed for the, LEN opera-
tions domain.

In considering how to build an embedded
training system, three issues were addressed in
the dcvclopmcnt of a prototype called the Link
Monitor and Control (LMC) Training System:
First, what is skill and how is it acquircxl in the
task domain? The answer to this question was
attained by developing a computational cogni-
tive model of problem solving and skill acquisi-
tion in the LMC system task domain.
Hill&Johnson  (1993a) and lIill (1993) dcxribc
the cognitive model in detail and the results of
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this work arc summarized in the section enti-
tled “A Cognitive Model of Skill Acquisition.”

Scmnd, how should the design of the train-
ing system reflect what is known about  skill ac-
quisition in the domain? in particular, what
sort of training should be provided and how can
an intelligent tutor best interact with the stu-
dent to optimize the k?arning  process? Based on
the results of the cognitive modeling work, a
new method called “impasse-driven tutoring”
was devised and in]plcmcntcd in a tutor called
WIACI’, which is a component in the LMC train-
in~ system prototype. A pilot study evaluating
the LMC training system was conducted, and the
results indicate that IWACT will be an cffcc-
tivc tutor  for the LMC training system. The de-
tails of this work are rcporlcd in I lill&Johnson
(1993b) and 1 lill (1993) and arc summarized in
the section entitled “L.MC ‘1’raining System.”

The first two issues have largely been ad-
dressed by the research summarized in this pa-
per, but there is a third issue t}]at is still open,
namely, how feasible is it to embed the training
systcm in an operational environment? In many
respects this will remain an open issue until an
attempt has been made to actually embed the
trainer in a system, but there arc a number of
reasons to believe that it is at least pmsiblc,
based on the design of the tutor that is dcscribcd
in this paper. A discussion of some of t}~c issues
that must still be addressed to prove the feasi-
bility of building an cmbcddcd training systcrn
arc addressed both in the section on the 1*MC
‘1’raining  System and the following section on
“open ISsucs.”

~. QJ!jLvc Model of Skill Acq~isitio~~

The ultimate purpose for building a cognitive
model was to predict the effcc[ivcncss  of vari-

ous tutoring strategies in the 1.MC domain
(1 iill&Johnson, 1993a). In order to build the
mc)dcl, an analysis of the task domain was con-
ducted;  Opcrators were observed and inter-
viewed and sample  session logs were analyzed.
The analysis provided a number of insights
about the nature of knowledge and problcm
solving behavior at both the novice and expert
levels of skill, which Icd to some hypotheses
about skill acquisition that were implemented
in an cxccu table cognit ivc model that accounts
for the transition from novice to expert, Based
on the cognitive rnodcling work a new method
tutoring st ra tcgy called “impasse-driven tutor-
ing” was developed and implcmcntcd in the
RliA~ tutor.

‘1’a~k DOmain A~sis: DSN opQE@.!.E
Tasks in the LMC domain involve operating a
communications link in NASA’s Deep Space
Network (LEN) to accomplish a mission, which
is a schcdulcd event that typically lasts sev-
eral hours. Fach mission has a set of high level
goals, e.g., acquire data from a deep space
probe, dctcrminc  the location of a spacecraft us-
ing very long baseline intcrfcrometry,  etc.; and
each mission also has a set of written procedures
that specify actions to be taken on the cornnmni-
cations link devices. Communications links are
formed on a mission-by-mission basis; a link is
typically composed of a large dish antenna (26,
.34 or 70 meters in diameter), its electromechani-
cal controllers and subsystems, a rc-
ccivcr/exciter, and so on. I’roccdurcs arc exc-
cutcd by sending commands via the LMC systcm
to the dcviccs assigned to the link .

Figure 1 shows an example of a typical mis-
sion hierarchy. III this case the mission is a
type called Very Long Baseline Intcrferomctry

Mission:

Procedures:

Commands:

d’{Configure-DSP
&&

Coherence-Test . . . Acquire-Data ● ● ● Playback-Data

Load-Predicts Sot-SAT-Values
I

●  . *
I

Select-Recorder
I

Figure 1: Example mission: Very 1 ong Baseline lntcrfcrornclry
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(V1 ,Bl), which consists of a .sct of procedures:
Configure-IEI’,  Coherence-3’est, A~quirc-I)ata,
1’layback-IJata,  and so on.

}{ach of the procedures involves issuing a se-
quence of commands. l~igurc 1 shows some of the
commands for the Configure-DS1) proccd urc.
Once a command has been sent, the Operator
wails for a rcspon.sc from the target subsystc]n
that indicates whether the command was rc-
jcctcd or accepted. If the command is accepted,
the Operator monitors the subsystem to deter-
mine also whether the cc)mmand  had tlw de-
sired effect.

} lme is a summary from (} lill&]ohnson,
1993a; 1 lill, 1993) of what was learned about
problem solving and skill in the l,MC task do-
main:

1. Rote procedure execution is not sufficien ~.
‘1’hrough  interviews with LMC Operators and
anal ysis of 1 *MC Operator logs, it became clear
that procedures cannot always t-w executed in
the order specified. The devices being con-
trolled am interactive in nature, consequently,
changes in state are not instantaneous when a
command is issued. Furthermore, devices may
not be in an optimal state for taking an action
spccificd  by the proccdurc, and devices may
fail uncxpcctcd]y,  leading to tlw need to change
the default proccdurc,  This leads to the next
two obcrvations.

2. commands have preconditions that must
be satisfied .bcfore they can be successfully exe-
cuted. For this reason, a command cannot be
blindly cxccutcd, rather, the Operator must
verify  that the associated dcviccs arc in the
ri@t state before issuing it. ‘1’hus  a precondition
is a description of a device state, and each com-
mand can have multiple preconditions that
must bc .satisficd.  When the Operator cxccutcs
a command without regard to its preconditions,
the command may either be rcjcctcd cw lead to a
systcm failure or error. At a minimum, a COIII-
mand rejection costs the Operator time; some er-
rors may lead to the failure of a proccdurc’s
coals.

3. Cotnmands ham effecis, o r  pos~condi-
t ions, whose successful implmen tal ion mus f be
verified once they have been  issued, III other
words, the Operator must attend to the effects
of a command once it has been issued. Like a
prcconditicm,  a postcondition is also a descrip-
tion of a device state; it can be viewed as a goal
that must be satisfied in order to complctc the

intention of the command. So not only does the
Operator have to atkmd to the state of the dc-
viccs pric)r to issuing a command, but the stale of
the dcviccs must also be attended to afterward
as well.

4. Mission procedures have ,goals. Each of
the procedures that arc used in the performanm
of a mission has a set of goals that must be ac-
complished. If a procedure has been complcte]y
cxecutcd and its goals have not been achicvd,
then the Operator must take remedial actions to
accomplish them. Of course, if the Operator
does not recognize that the procedure’s goals
have not been achicvcd then it is possible that
the mission’s goals may not be achieved. For
example, if a parameter setting on a device is
given the wrong value by the Operator then the
data that is collected may bc affected, making
it more difficult for the scientist to process and
usc it.

5. A partial order exists among procedures,
l’his is an artifact of the IEN operational envi-
ronment  where a strict order is not always de-
fined among procedures (Fayyad&Coopcr,  1992;
I lill&Lce,  1992). It is possible and often desir-
ab]c to interleave procedures in order to opti-
mize the cxecu t ion of the mission task, but there
are dcpcndcncics among the procedures that
compel the Operators to partially order their
execution. There are two problems that arise
when the Operator does not understand the dc-
pcndcncies among procedures: either the task is
performed inefficiently, i.e., by not interleaving
the procedures, or CISC the procedures arc per-
formed out of order, which may lead to errors
and lost time.

~heorv of Skill Acctuisition
An exccutab]c cognitive rnodcl was developed to
reflect the observations that arc outlined
above. By an cxccutablc  cognitive model, it is
meant that the model produces behavior sin~i-
lar to what has been observed in actual DSN
operations. Since the purpose of the cognitive
model was to inform the design of an intelligent
tutor, there were two additional goals for its
inlplenwntat  ic)n. }’irst, it had to reflect the be-
haviors  of both novice and expert problem
solvers. Second, it had to lead to hypotheses
about how a novice acquires skill in route to bc-
corning  an expert.

The cognitive model was dcvclopcd in Soar,
which is a problcm solving architecture based
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on a theory of cognition (Laird ct al., 1987;
NcwcII, 1990). Soar has a learning nwchanism
called “chunking” that generates new produc-
tions to summarize the results of problem solv-
in~ in a goal hierarchy (l{owI~lJloo]~~&Ncwell,
1986). Subgoals arc forrncd when soar rcachcs
an impasse, of which there arc several types. A
Soar impasse occurs when the problcm solver is
not making progress toward a solution. If a solu-
tion is found by the subgoal, then a chunk is crc-
atcct to summarize the conditions that led to the
impasse and the results that resolve it, so that
the next time the impasse conditions occur the
chunk can be applied.

A part of the cognitive model is shown in
h’igurc 2. in this example the proccdurc  called
Configure-IXI’ is modeled, which is onc of the
procedures from the V1,M mission that is shown
in Fi~urc 1. This procedure involves performing
actions to load a predicts file (Load-I’rcdicts),
select a recording dcvicc (Select-l{ccordcr), and
so on. ‘I”hus the boxes that are shown next to the
“Conm~ands” label in Figure 2 are all considered
to bc operators, that is, functions that have pre-
conditions and postconditions. I’hc example in
l~igurc 2 shows the cognitive mode] issuing the
command associated with setting the S-Band
attenuation value, SAT 30, which is done once
the preconditions for the Set-SAT-value opera-
tor are sati~ficd.

‘l’asks are performed by the Soar-based cog-
nitive model by first selecting a proccdurc (e.g.,
Configure-DSI’) and then .sclccting  an operator
to apply such as Set-SAT-Value. Each of these
.selcctions corresponds to a subgoal in the Soar
architecture. Once a command operator has

been sclcded, a subgoal is formed to verify the
operator’s preconditions (i.e., the subgoal cal[~
Verify-Opcratc) r-I’reconditions shown in Figure
2). If all of the preconditions arc satisfied then
the model issues the command (e.g., SAT 30) to
the dcvicc. Under normal circumstances the
model would then have a subgoal to verify that
the command had executed as expected (Verify-
Opera tor-]’ostconditions), and would move onto
the next command operator once the postcondi-
tions are satisfied. This summarizes how prob-
lem solving takes place under ideal conditions,
Now consider how the model represents the be-
havior of an LMC Operator when the conditions
are not ideal.

When an expert Operator notices that a
precondition of a command operator is not satis-
fied then a subgoal called Rcpair-Unsatisf icd-
I’recondition is formed to find a command whose
execution will satisfy the precondition by
putting a device into a desired state, Once lo-
cated, the repair operator is subjcctcd  to the
same kind of precondition and ~stcondition
checking that has already been described. It is
exccutcd and then the previously unsatisfied
precondition of the original command is re-
evaluated. This simple form of recovery repre-
sents the reactive nature of problem solving
that takes place in the LMC domain, and it il-
lustrates  why rote execution is not sufficient
since the proced urcs do not contain all of the
contingencies that may occur during a mission.
This also illustrates the usc of command precon-
ditions and postconditions by the Operators in
performing a task.

Procodure:

-

Commands: F=$==ll==l ●  * * &

-——1—
L I 1 I

1

Verify-Operator- Ftepair-Unsatisf  ied- SA-r 30

“d

Verify-Operator- Attend-to-Unsatisfied-
Preconditions Precondition Postconditions Postconditlon

. command-x

a
Device

Figure 2: Cognitive model for Configure-LMI’ procccturc
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in icrms of skill acquisition, the model that
has been discussed thus far takes advantage of
tl~e Soar chunking mechanism. Since the prot>-
lem solving is done in a goal hierarchy, chunks
are being built as the problem solving proceeds.
l’his means that the processes of selecting com-
mand operators, verifying their preconditic]ns,
repairing unsatisfied preconditions, issuing the
command, and verifying its postconditions are
all compiled into chunks that enable the proce-
dure to be performed more efficiently the next
time the task is attempted, This accounts for
the kind of efficiency gains that arc observed
among Operators who practice the task. What
is still left to show is how novices are modeled,
both in terms of their behavior and how they
acquire new knowledge.

Novices were  modeled as problem solvers
who lack knowledge about command precondi-
tions. Consequently, if the novice does not know
a command’s precondition and the prccond it ion
is not satisfied, then the novice will issue the
command without attempting to repair the  un-
sat isficd precondi t ion in the manner that the
cxpcrl would. If a precondition is not satisfied
the command will like] y be rejected by the sys-
tcm; this is the point at which the novice can
potentially acquire some new knowledge. ‘1’hc
model assumes that the Operator will notice
that the command has been rcjcctcd slid will at-
tempt to do something about it; tl~is is rcprc-
scntcd by the subgoal called Attcnd-to-
Unsatisfied-1’ostcondition in Figure 2. In this
subgoal the novice acquires knowledge about the
missing precondition that lcd to the command
reject ion. Once acquired, the prccondi tion can be
verified and repaired, which leads to correct
behavior. As was the case with all of the prob-
lem solving, this new knowledge is com}>iled
into chunks that improve the overall efficiency
of task execution.

WI) l+Wircm~l~ts t~riv~~  from Model
The cognitive model led to a number of insights
that affected the design and il~~]>lcr]~ct]tatiol]  of
the I.MC Training System, and especially the
R}lAC’I’ intelligent tutor, %mc of the design dc-
cisicms that were made from the lessons learned
from the cognitive model arc summarized in the
following paragraphs, (For more dciails, see
1 Iill&John.son, 1993a, 1 Iill&Johnson,  1993b, and
}Iill, 1993.)

1. Pcr/orm the training on a sinlulalor.  This
addresses several of thr results of the cognitive
model. I~irst, the cognitive model improved its
performance by compiling its problem solving
experience into ncw chunks. This is “learning by
doing” and it implies that practice is required
in order to acquire this aspect of skill. Second,
practicing the procedures cm a simulator repro-
duces the interactive nature of problem solving
in the 1.,MC task domain. The cognitive model
gained “reactive” skill by recc)gnizing and re-
pairing um.atisfied preconditions.

2 .  lnfcrarl zoifh fhe sfudcnt  when  fhew is a
problenl  soloing  injpasse,  The cognitive model
acquires new knowledge when it has a “knowl-
edge-level” impasse (Hill, 1993). This is an
impasse where problem solving cannot be con-
tinued duc to a lack of some knowledge. In the
cognitive mc)del the missing knowledge is com-
mand preconditions, but this can be expandwl to
include knowledge about procedural dependen-
cies and procedure goals also. There are two
reasons for interacting with the student al an
impasse point. The first reason is based cm the
way Soar works: learning (is., chunking) occurs
in a goal context, Thus, it makes sense that tu-
toring will be most cffectivc  if it is applied in
the goal context where the knowledge is
needed, This leads to the second reason:” the
cofinitive model acquires new knowledge at the
impasse point. This was a natural place for the
problem solver to seek after new knowledge
since the problcm solving could not continue
without it.

3. Develop a flexible recognition strafcgy,
l“his design requirement is derived from the
previous two and it refers to the task of model-
ing the student by interpreting the student’s ac-
tions. Since tasks are interactive, this means
that the tutor must be capable of recognizing not
only when the student has reached an impasse,
but also whcJ~ the student has correclly taken an
action that deviates from the default proce-
dure. It is not desirable to interrupt the student
when there is not an impasse, since it can dis-
tract from the current goal context. Since the si-
tuation may dictate that a precondition be sat-
isfied (i.e., repaired) before continuing with the
default procedure, the tutor must be able to dis-
tinguish this type of behavior from impassc-
based behaviors.

4. Assist the student in acquirin~  knowled~e
about comnland preconditions and postcondi-
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Iio}ls,  p r o c e d u r a l  dq)ctldctlcjes,  a)ld procedural
goals.  This partly  follows from the cognitive
model, which shows how Operators acquiw
knowlcd~c about  conln]al]d  p r e c o n d i t i o n s ,
Missing knowledge in the other categories will
lead to impasses other than the c)nes that were
modeled. ‘l-his puts a further rcquircnwnt  on the
s[uden(  Inodclcr  to rccognizt  wllcn the student
has an impasse due to a lack of knowledge about
each of these types of knowledge.

1,MC  Trainin@y@e!]l

‘1’his  section addresses tllc second issue  of in~-
plemcnting  an cmbcddcd training system,
namely, how to design and implement the sys-
tcm to meet the rcquircmcnts  derived from the
cognitive model. Ikmr general requirements de-
rived from tlw cognitive model were described
in tlw last section. ~’hcsc rcquircmcnts have
driven the development of the LMC Training

System and RIIAC’1’  intelligent
now bc described. (See l~i~urc 3.)

tutor that will

“1’hc rcquircvncnt  for a simulator is satisfied
b y  t w o  o f  the Systc’m’s  components,  the
~raphical U.scr lntctfacc,  and the link sin~ula-
tor. ‘J”hesc components simulate t}~c I.MC user
interface and the link devices’ states, rcspcc-
tivcly.  1’Iw other requirements arc addressed
by an intelligent tutor called REACT.  REACT
implc]ncnts a method called “impasse-driven”
tutoring, whereby interactions with the student
arc initiatd  when it rccogni7m a problcm solv-
ing irnpassc. Impasse recognition is pcrfor[ned
usinz a new tcchniquc called “situated plan at-
tribution,” which provides a flcxib]c way of
tracing the student’s behavior: it can rccognizc
when the student is deviating from a procedure
in reaction to a situational contingency
(1 lill&Johnson, 19931);  Ilill,  1993). in addition,
it recognizes impasses stcrnming from knowl-
edge-level gaps concwning command prc-condi-
tions, proccdutal dcpcndcncies  and procedural
goals.

1 “’””
.—

1 tic Tlltor ]. [1 il-— rvcnt  I  “~
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~ , . .

I
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Figure 3: LMC ‘1’raining Systcm
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Graphical

!Jse r interface
Directive Menu

LMC Event Log

System Displays

WAGT Tutor Window

“ask Progress Display

Diroctivo Link Simulator
Command Processor

Device State Models

Device Display Data
Directive&Response

Impasse Tutoring
Task Progress Data I

I Output Functionsu Device State Data
Directive&Response

J3EACT Tutor I
~ impasse Recognize

Expert Cognitive Model I
Figure 4: 1,MC ‘1’raining  System Architccturc

The remainder of this section dcscribcs the
1.MC Training System, beginning with an exan~-
plc of a training session with a student. I%is is
followed by a high-level overview of the ar-
chitecture and a description of each of the
training system components. The final “cn~lwd-
dcd training” issue is addressed indirectly here
in that the design of the prototype system has a
bearing on the later discussion on the feasibility
of incorporating the trainer into an operational
cnvironrncqt. 4

l!xamplc~f  ~lr3i@@ks%D
‘1’o better understand how the training systcrn
works, consider the example shown in Figure 3.
This figure shows part of the actual graphical
user intcrfacc for the training systcm. The
Operator selects a command from the Ccmmand
Window and sends it to the simulator. ~“hc sin~-
ulator processes the command and sends the di-
rective  and its response to the Event L,og win-
dow. Device state changes arc also sent to a sys-
tem display, which in this case is the NCNF
display.

in the example shown, the Operator has un-
succcssfull  y sent the both the N LOAD and
NRMfiD  commands, which were rcjcctcd.
RIIACT  obscrvcct both of these rcjcclions  and
rccogniz,cd that the Operator was at an action
constraint impasse in each case. The impasses
were explicated using the expert cognitive
model; RliACI” gcncratcd explanations of what
caused the commands tc} be rcjcctcd and how to
fix the underlying problem. These explanations

were sent to the LMC Tutor window. Figure 3
shows the advice that was given to the student
about the impasse related to the NRMED  com-
mand.

ArchitectuIc
The LMC Training Systcm architecture, shown
in Figure 4, has three components: the
Graphical User lntcrfacc,  the Link simulator,
and the REACT tutor. The Operator interacts
with the Link simulator via the windows pro-
vided by the Graphical User lntcrfacc (GUI).
The simulator, in turn, communicates the device
state data and directives and their responses to
the REACT Tutor and back to the Graphical
User Interface. Based on the Operator’s actions
and the device state changes, REACT deter-
mines whether the student is at an impasse. As
was shown in the example, the tutor mmnmni-
catcs its advice to the student through the
Graphical User Interface. in addition, the tutor
also updates a task progress display indicating
how WC1l the student is perfom~ing  the task.

The LMC training systcm has an objcct-ori-
entcd design. Designing the system  in this rnan-
ncr allows parts of the systcrn to bc reused. For
example, the graphical user interface is a sepa-
rate object so program code that implemented it
is localized and not interwoven with other
parts of the systcm. If it was dccidcd to change
the user interface, the GUI object could be up
dated or replaced while the interfaces to the
other objects would remain unchanged. Another
example would bc to rcplacc  the simulator ob-
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jcct with an interface to the real I. MC, while
tlw o[her I.MC t ra iner  objects rmnaincd  the
saInc. llvcn  if the 1,MC  trainer remained sepa-
rate from the I.MC system, the user intcrfacc
object could be shared bctwccn the trainer and
the I. MC, and therefore C)perators would berc-
cciving training cm the user interface with
which they would eventually operate the sys-
tem.

! .in.k .Simulator
‘1’hc I.ink simulator models the state of the dc-
viccs in the communications link, It is designed
to mode] these dcviccs from an Operator per-
spective:  it reacts to Operator commands with
the same observable state changes and responses
as the actual devices. ‘1’hc three functional
components of the simulator are the device
models, a command processor, and a set of output
functions. The device mcldcls keep track of the
current states of the devices. I“hc command pro-
cessor parses the Opera tor commands and causes
the dcviccs to change state. The output func-
tions generate messages  to the operator that
appear in the I?vcnt  Log  and Systcm Displays.

Graphical User lntcrface
‘1’lw graphical user interface (GUI) for the I.MC
training system was developed using the
Motifl’M widget set and the Widget Creation
1,ibrary (WCL).* The Motif widget set was cho-
sen because it has become a standard for user in-
terface development. WCL was chosen to make
the user interface dcvclopnwnt easier and
faster. Because WCI, allows the user to define
the entire wictgct ttcc in rcsourcc  files, it re-
duces the amount of code and thus time required
to develop the user intcrfacc.

The GUI was designed to be easy to use: the
operator inputs commands to the systcm from a
menu,  where the commands arc provided in an
alphabetical list. The user select  and clicks on
a command with a mouse pointing device and
types in any required parameters. (See the
Command Window in I:iSure 3.) As with the
real 1 MC, the event log is very impc)rtant  to the

* 1 ho Widget Creation Library (WCL) was developod
by David E, Smyth at the Jet Propulsion Laboratory.
I t  i s  a v a i l a b l e  b y  a n o n y m o u s  f t p  f r o m
export.lcs.  init. edu in the files contrib/Wcl-2.5  .tar. Z
with documentation in the files contrib/Wcl Doc.t.Z.  and
contrib/Wc17XTC. ps.t.Z.

operator. 7’}w 1.MC trainer has a representation
of the event log, which prints the operator di-
rectives  and the system responses. (See the
l[vcnt Log window in I;igure 3.) When the LMC
trainer detects an impasse, it prints the problem
and suggested solution in the LMC Tutor win-
dow, shown in Figure 3. The LMC Tutor window
also provides access to other LMC displays
through pull down menus. An example of an
LMC display is the NCB Configuration Table
(NCNF) shown also in Figure 3. Other informa-
tion that operators need is written on white
boards in the operations room. This information
is represented in the I-MC trainer as the White
Board display. There arc many more LMC dis-
plays available to the operator which are not
yet represented in the trainer. Figure 3 rcprc-
scnts a sample layout of the LMC tutor win-
dows. The opxator  can arrange the windows to
his/her liking.

REACT Tutor
The tutor n~oni!ors the state of the devices in
the Link simulator and all student-sirnulator
command interactions. The student performs an
assigned task and REACT uses a technique
called “situated plan attribution” to interpret
the student’s behavior (Hill&Johnson, 1993b;
}Iill, 1993).

Since the tutoring is impassedrivcn,  it is
imperative to rccognim  when the student has
rcachcd  an irnpassc. REACT  recognizes in~-
passes in three categories: action-constraint,
plan dependency, and goal failure, ‘I”hc theory
behind this method is that the irnpasscs in
each of the.sc categories occur as a result  of a
know]edge-level gap or misconception about
command preconditions/postcon ditions, plan
dependencies, and plan goals, respectively.
(Note: the terms “plans” and “procedures” are
used synonymously. ) Once an impasse is de-
tcctcd, the tutor employs its expert cognitive
model to generate an explanation of the irnpasw
and how to resolve it. This information is given
to the student through the LMC Tutor window.

A pilot study has been conducted to dc+er-
minc the effectiveness of the REACT tutor in
helping Operators acquire skill in the task do-
main (1 Iill, 1993). ‘t’his  evaluation indicates
that students who usc the LMC training systcm
with the tutor arc ab]c to resolve impasses dur-
ing training approximately ten times as fast as
Stlldcnts who use it without the tutor. In addi-
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tion, the tutor dctectcd impasses that went un-
noticed by (1w untutored students; the untutored
student could fail to achieve a goal and never
rea]iz<c  it, which is onc of the problems that
currently exists in the IXN  operational envi-
ronment.

OJxc? 1ss11(’s———. ..—

There arc many ways of envisioning how a
training system such as the one described in this
paper could be integrated into an operational
environment, but for the purposes of this discus-
sicm only two cases arc considered: (1) embed
the training systcm in the operational system
(e.g., in the actual LMC), or (2) keep the train-
inc system as a separate entity.

in case 1, where the training system is an in-
tegrated part of the operational system, the
question that needs to be addressed first is
whelhcr  it is practical or desirable to conduct
training on the actual systcm. If there is no time
available for using the operational system for
trainins then it probably does not rnakc sense to
embed a training system in it. On the other
hand, if a flexible view of training is taken
where the Operator uses “dead time” during a
track to practice for an upcoming mission then it
may prove useful to provide this capability.

In case 2, where the training system is a
separate entity, there are other operational is-
SUCS:  1s the system located in a p]acc where it
will be used? Will the operators be allocated
the time to use the training system? These ques-
tions are beyond the scope of this research, but
they have a bearing on deciding whether to im-
plcmcnt  the trainer as an embedded part of the
operational system or as a separate entity.

Given that case 1 or case 2 makes opera-
tional sense, then the feasibility of in~plcnwnt-
ing the trainer for the operational system can be
evaluated by asking the following questions
with respect to each of the trainer’s components:
(1) 1s the component needed? (2) I low will the
component be built so that it accurately reflects
the target systcm? (3) } low will the component
be maintained to reflect changes to the target
system?

Ckar]y, a]] three of the training system
prototype’s components are conceptually ncccs-
sary: tlm graphical user interface and simula-
tor arc crucial for providing a realistic training
environment, and the tutor provides a way of

accelerating the lcarni  ng process. Thus the an-
swer to question 1 appears to be “yes” for all of
the components.

~“he answers to questions 2 and 3 are not as
clear as for question 1. These would not be issues
for the graphical user interface if the training
system was able to use the same code as the ac-
tual system. ‘1’hc trainer and the operational
systcm would always be consistent with one an-
other if this were the case. The only difference
would be that there would be some additional
windows through which the tutor could comn~u-
nicatc with the student.

There is more of a problem with building
and maintaining a simulator that is function-
ally consistent with the actual devices and sub-
systems. Clearly there would be a need to have
a rigorous way of specifying the functional de-
sign so that it could be readily implemented and
verified in both the simulator and the actual
system, One approach might be to use the sinm-
lator as a living functional specification. Not
only would this serve the needs of the training
systcm,  but it would also be helpful for testing
the interfaces among subsystems. This is an
area that requires further rwsearch.

l“he REACT tutor itself would have to be
designed and maintained to accurately reflect
the preconditions and postconditions of each of
the commands, the dependencies among proce-
dures, and the goals of each of the procedures.
Each time the characteristics of a device or sub
system are modified, then it would be necessary
to rc-evaluate the validity of the tutor’s
knowledge base. Again, this is an area that is
open to further investigation, Because of the
way that the tutor is implemented, the knowl-
edge bases containing this kind of information
are separable from the underlying method for
detecting and explicating impasses. This lends
itself to constructing knowledge base libraries
that could be globally checked and maintained
by system developers.

Finally, there is a broader issue than the
two cases concerning whether the training sys-
tem should be embedded or kept separate; this
is the issue of utility: Does the training system
help the operators to an extent that it justifies
the effort needed to build it? This can be an-
swered in part by evaluating the training sys-
tem’s effectiveness in training Operators. The
pilot study mentioned previously provided
some interesting results that appear to indicate
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that the training system holds promise as a
means of accelerating the skill acquisition pro-
cess, but the cvaluat  ion needs  to be expanded to
include a larger test population cm a larger set
of tasks. ~’here are plans to perform a more rig-
orous cvaluaticm of the system.
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